

AVR911: AVR Open Source Programmer

Features
• Open source C++ code
• Modular design
• Reads device information from AVR Studio’s XML files
• Supports the Bootloader in AVR109
• Supports the In-System Programmer in AVR910
• Command-line equivalent to AVR Studio command-line tools
• Expandable to other programmer types
• Expandable to other communication channels, e.g. USB

Introduction
The AVR Open Source Programmer (AVROSP) is an AVR programmer application
equivalent to the AVRProg tool included in AVR Studio. It is a command-line tool,
using the same syntax as the other command-line tools in AVR Studio.

The open source code and its modular design make it easy to port the application
to other platforms and to add support for other programmer types and
communication channels. Currently, AVROSP supports the programmers
described in AVR109 and AVR910 through the standard PC serial port. The
application note describes how to add more support.

AVROSP reads and writes Intel HEX files, and can use an existing AVR Studio
installation to get required device parameters. This means that AVROSP
automatically supports all devices supported by AVR Studio. No update is required
for future AVR devices other than keeping your AVR Studio installation up to date.

8-bit
Microcontrollers

Application Note

Rev. 2568A-AVR-07/04

2 AVR911
2568A-AVR-07/04

Background and theory
From a user’s point of view, programming an AVR device basically consists of the
following steps: Wiring up the programmer to the device, preparing the binary files to
be programmed and finally launching an application for the specific programmer in
use. These steps are basically the same, regardless of programmer type. The
AVROSP application tries to generalize this procedure into one application, thereby
eliminating the need for different applications with different syntax and usage for each
programmer type. Whether you are using a bootloader, an in-system programmer or
a third-party programmer, the procedure is basically the same. AVROSP gives a
consistent interface to the programming operation.

Application Note AVR109 and AVR910 describe Bootloader and an In-System
Programmer (ISP). They both support the same operations - the Bootloader through
the on-chip UART, and the ISP through a AT90S1200-based programmer. The
Bootloader is compiled for a specific device, and naturally supports programming it.
The ISP is not updated to directly support devices after ATmega163, but has a
“Universal Command” that can be used to program all devices that support in-system
programming. AVROSP supports both programmers. It reads the programmer’s
signature and decides which commands to use to communicate with the programmer.
The user therefore does not need to specify the programmer type, provided that the
programmer responds correctly to the “Read programmer ID”-command. Please refer
to AVR109 and AVR910 for more information on the protocols.

A minimal set of device information required for programming (memory sizes, lock
and fuse bits etc.) is available in the XML-type Part Description Files in an AVR
Studio installation. AVROSP reads the information it needs from these files. If AVR
Studio is not installed, e.g. if AVROSP is used in production programming or ported to
other platforms (e.g. Linux), the Part Description Files could still be used. The
application first searches the current directory, the AVROSP home directory, the
directories specified in the PATH environment variable, and finally the AVR Studio
installation. Therefore the Part Description Files could be copied to a directory in the
PATH, and there is no need for installing AVR Studio.

The original Part Description Files are very large, and it takes some time to parse
them. Therefore AVROSP creates a small XML file containing only the parameters of
interest, and stores it in the AVROSP home directory. If updates are made to the
original files, e.g. by an AVR Studio upgrade, the cached XML files should be deleted
to tell AVROSP to regenerate them.

Currently, the Part Description Files do not contain any information on the specifics of
each device’s programming algorithm. The ISP module of AVROSP therefore
implements the algorithm used in the most recent AVR devices. Due to this, in-
system programming of some devices that use slightly different algorithms are not
supported. This applies to the following devices: ATtiny12, ATtiny15, ATtiny26,
ATtiny2313, AT90S1200, AT90S2313, AT90S2323/2343, AT90S4433, AT90S8515
and AT90S8535.

The bootloader module of AVROSP supports all devices with bootloader capabilities.

Note: ATtiny11 and ATtiny28 do not support ISP or bootloader programming, and are not
supported by AVROSP. The user could customize the code to support other
programmers, e.g. a serial high-voltage programmer.

 AVR911

 3

2568A-AVR-07/04

Quickstart information
This section describes the necessary steps to get up-and-running quickly, if you have
no need to modify or customize the application code

The executable file avrosp.exe is the only file required to use AVROSP. It is
contained in the avr911.zip file that comes with this application note. The ZIP-file
also contains the complete source code and a copy of the Part Description Files from
an AVR Studio installation.

Copy the executable to a new directory and add the directory name to the PATH
environment variable. If you do not want to install AVR Studio, copy the XML files to a
subdirectory (to prevent the cached files from overwriting the original files), and add
that too to the PATH. Now everything should be ready to use.

Note: The communication port settings (baud rate, parity control etc.) must be set manually
before using AVROSP. For example, to use AVROSP with a bootloader
communicating through COM1 with 115200 bps, no parity control and 8 data bits, run
the following DOS command:

mode com1 baud=115200 parity=n data=8

Command-line syntax
All parameters must start with a minus, one or more characters and a number of
optional values. There can be no spaces between the minus, the characters or the
optional values. The order of the parameters is not important. In case of conflicting
parameters, e.g. selecting both COM1 and COM2 for communication, the last
parameter always counts. The supported command-line parameters are listed in
Table 1.

Table 1. Command-line parameters
Parameter Description

-d<name> Device name. Must be applied when programming the device.

-if<infile> Name of Flash input file. Required for programming or
verification of the Flash memory. The file format is Intel Extended
HEX.

-ie<infile> Name of EEPROM input file. Required for programming or
verification of the EEPROM memory. The file format is Intel
Extended HEX.

-of<outfile> Name of Flash output file. Required for readout of the Flash
memory. The file format is Intel Extended HEX.

-oe<outfile> Name of EEPROM output file. Required for readout of the
EEPROM memory. The file format is Intel Extended HEX.

-s Read signature bytes.

-O<addr> Read oscillator calibration byte from device. addr is optional.

-O#<value> User-defined oscillator calibration value. Use this to provide a
custom calibration value instead of reading it from the device with
–O<addr>.

-Sf<addr> Write oscillator calibration byte to Flash memory. addr is byte
address.

-Se<addr> Write oscillator calibration byte to EEPROM memory. addr is
byte address.

4 AVR911
2568A-AVR-07/04

-e Erase device. The device will be erased before any other
programming takes place.

-p<t> Program device. Set t to f for Flash, e for EEPROM or b for
both. Corresponding input files are required.

-r<t> Read out device. Set t to f for Flash, e for EEPROM or b for
both. Corresponding output files are required.

-v<t> Verify device. Set t to f for Flash, e for EEPROM or b for both.
Can be used with –p<t> or alone. Corresponding input files are
required.

-l<value> Set lock byte. value is an 8-bit hex value.

-L<value> Verify lock byte. value is an 8-bit hex value to verify against.

-y Read back lock byte.

-f<value> Set fuse bytes. value is a 16-bit hex value describing the
settings for the upper and lower fuse bytes.

-E<value> Set extended fuse byte. value is an 8-bit hex value describing
the extend fuse settings.

-F<value> Verify fuse bytes. value is a 16-bit hex value to verify against.

-G<value> Verify extended fuse byte. value is an 8-bit hex value to verify
against.

-q Read back fuse bytes.

-x<value> Fill unspecified locations with a value (00-FF). The default is to
not program locations not specified in the input files.

-af<start>,<stop> Flash address range. Specifies the address range of operations.
The default is the entire Flash. Byte addresses in hex.

-ae<start>,<stop> EEPROM address range. Specifies the address range of
operations. The default is the entire EEPROM. Byte addresses in
hex.

-c<port> Select communication port, COM1 to COM8. If this parameter is
omitted the program will scan the COM ports for a programmer.

-b<t> Get attached programmer’s revisions. Set t to h for hardware
revision or s for software revision.

-g Silent operation. No output to screen.

-z No progress indicator. E.g. if piping to a file for log purposes, use
this option to avoid the characters used for the indicator.

-h Help information (overrides all other settings).

-? Same as –h

Some examples follows:

avrosp –dATmega128 –pf –vf –ifprogram.hex –e

The above example will first erase the entire memory contents and then program and
verify the data contained in program.hex to an attached Atmega128 device.

avrosp –dATmega32 –re –oedump.hex –ae0,ff –cCOM2

The above example will read the first 256 bytes of the Atmega32’s EEPROM memory
to the file dump.hex. Only COM2 will be used.

avrosp –dATmega64 –O#a0 –Se0 –lc0

 AVR911

 5

2568A-AVR-07/04

The above example will write the custom oscillator calibration value A0hex into
EEPROM address 0hex and then protect the Atmega64’s memory by writing the lock
byte to C0hex.

Note: When programming fuse bits, the bit pattern is not checked to be a valid fuse setting
for the device. Care should be taken not to program invalid fuse settings, as this could
render the device inoperable. High-voltage programming could be the only way to
recover from such a situation.

Implementation
This section assumes that the reader has some knowledge of object-oriented
programming concepts, and the C++ programming language in particular.

The source code is free in all ways, meaning that users can modify and enhance the
application and redistribute it as they wish. More information on free software is
available at the following URL: http://www.gnu.org/philosophy/free-sw.html.

Figure 1. AVROSP Class Diagram

SerialPort

CommChannel

JobInfo XMLFile HEXFile AVRDevice

Utility

ErrorMsg

AVRProgrammer

AVRBootLoader AVRInSystemProg

Most of the top-level work is encapsulated in the JobInfo class. It uses objects of
class XMLFile, HEXFile and AVRDevice to read and write XML and HEX files and
to extract device information from the Part Description Files.

The two helper classes Utility and ErrorMsg are used throughout the application.

The part of JobInfo that communicates with the programmer does not need to know
what kind of communication channel to use. It decodes the command line and creates
an instance of the required derived class, e.g. the SerialPort class. The rest of the
code just works through the generalized CommChannel parent class. Currently, only
a class for the PC COM port is implemented, but to use e.g. USB or TCP/IP
communication, you could derive a specialized class from the CommChannel base
class, and add a check for this channel type in the command line parser.

The same method is used for the programmer type. The code that operates on the
programmer does not need to know which type of programmer is attached. The
JobInfo class retrieves the programmer ID string and creates an appropriate object
for the specific programmer. The rest of the code operates through the generalized
AVRProgrammer interface. Currently, only classes for the Bootloader described in
Application Note AVR109 and the In-System Programmer described in Application
Note AVR910 are implemented. However, you could derive your own specialized

6 AVR911
2568A-AVR-07/04

programmer from the AVRProgrammer base class, and add a check for it in the ID
string decoding part of JobInfo.

This design makes the application very flexible. Future extension with other
communication channels and programmer types is an easy task.

Only the public interface methods are described here. The reader should refer to the
commented code for detailed information on the inner workings of the various
classes. Each class is described with a brief introduction to the class’ purpose and
then each of its public methods is described with return type, parameters and
purpose.

This class provides a container for relevant parameters for the current programmed
device, such as memory sizes and signature bytes. The class also contains
functionality for retrieving device information from an AVR Studio installation.

This is the constructor for the class. It takes one string parameter, the name of the
device to retrieve information for. The parameters are not retrieved automatically. The
class provides a method for reading the information for AVR Studio, but derived
classes could implement other means of getting this information.

This is the destructor for the class. It currently has no function, just a placeholder for
future extensions.

This searches the current directory, the application home directory, directories in the
PATH environment variable and, if available, the AVR Studio installation for the
required XML file. To get the path for the AVR Studio installation, the Windows
Registry Database is queried for the key named
“HKEY_LOCAL_MACHINE\Software\Atmel\AVRTools\AVRToolsPath”. The
method then parses the XML file and retrieves the necessary information. An
exception is thrown if the file is not found or if the file contains errors. The method
takes a list of search paths as parameter, and returns no value.

This is an access method for the Flash memory size parameter. It takes no
parameters, and returns a long value indicating the number of Flash bytes.

This is an access method for the EEPROM memory size parameter. It takes no
parameters, and returns a long value indicating the number of EEPROM bytes.

This is an access method for the Flash page size parameter. It is only valid for AVR
parts with Flash pages. Other parts return the value –1. The method takes no
parameters, and returns a long value indicating the number of bytes in each Flash
page.

This is an access method for checking if the device has fuse bits. It takes no
parameters, and returns true if there is a “FUSE” section in the XML file, false
otherwise.

This is an access method for checking if the device has extended fuse bits. It takes
no parameters, and returns true if the device has extended fuses, false otherwise.

This is an access method for retrieving the signature bytes for the device. Note that
this is not the signature bytes read from the actual device, but the signature read from
the XML files. The method takes three long pointers as parameters, and returns no
value. The signature bytes are copied to the variables pointed to by the parameters.
An exception is thrown if any of the pointers are null pointers.

This class is an abstract class, providing a framework for implementing an interface
for a specific AVR programmer, e.g. a boot loader or an in-system programmer.
Almost all methods are virtual and empty and must be overloaded by derived classes.

Class Descriptions

AVRDevice

AVRDevice

~AVRDevice

readParametersFrom
AVRStudio

getFlashSize

getEEPROMSize

getPageSize

getFuseStatus

getXFuseStatus

getSignature

AVRProgrammer

 AVR911

 7

2568A-AVR-07/04

The programmer works through a generalized byte-oriented communication channel,
which must be provided when creating an instance of this class.

This is the constructor for the class. It takes one parameter, a pointer to a
CommChannel object. This is the channel used for later communication with the
actual programmer. An exception is thrown if a null pointer is provided for the
communication channel.

This is the destructor for the class. It currently has no function, just a placeholder for
future extensions.

This is a static method for reading a connected programmer’s ID-string. This method
sends a ‘S’ to the programmer through the communication channel supplied in the
method’s only parameter, a pointer to a CommChannel object. Use this method to
decide which derived programmer object to create. The method returns the seven-
character ID-string of the programmer. An exception is thrown if a null pointer is
provided for the communication channel, or if an error occurs during communication.

This is an access method for the programmer’s Flash page size information. This
must be used prior to any Flash operations. The method takes one long parameter,
the Flash page size in bytes, and returns no value.

This method is virtual and not implemented in this abstract base class. It should tell
the attached programmer to enter programming mode. The method takes no
parameters, and returns true if this operation is supported by the programmer,
false otherwise. An exception should be thrown if any communication errors occur.

This method is virtual and not implemented in this abstract base class. It should tell
the attached programmer to leave programming mode. The method takes no
parameters, and returns true if this operation is supported by the programmer,
false otherwise. An exception should be thrown if any communication errors occur.

This method is virtual and not implemented in this abstract base class. It should tell
the attached programmer to erase the attached device’s contents. The method takes
no parameters, and returns true if this operation is supported by the programmer,
false otherwise. An exception should be thrown if any communication errors occur.

This method is virtual and not implemented in this abstract base class. It should read
one of the oscillator calibration bytes from the attached device. The method takes two
parameters, a long indicating which OSCCAL value to read and a long pointer to a
variable to which the value should be copied. The method returns true if this
operation is supported by the programmer, false otherwise. An exception should be
thrown if any communication errors occur, or a null pointer is provided.

This method is virtual and not implemented in this abstract base class. It should read
the signature bytes from the attached device. The method takes three parameters,
three long pointers to the variables to which the values should be copied. The
method returns true if this operation is supported by the programmer, false
otherwise. An exception should be thrown if any communication errors occur, or a
null pointer is provided.

This method is virtual and not implemented in this abstract base class. It should
check the supplied signature bytes against the attached device. The method takes
three parameters, three long parameters containing the signature to be checked.
The method returns true if this operation is supported by the programmer, false
otherwise. An exception should be thrown if any communication errors occur, or if the
supplied signature does not match the attached device’s signature.

AVRProgrammer

~AVRProgrammer

readProgrammerID

setPagesize

enterProgrammingMode

leaveProgrammingMode

chipErase

readOSCCAL

readSignature

checkSignature

8 AVR911
2568A-AVR-07/04

This method is virtual and not implemented in this abstract base class. It should write
a byte to the attached device’s Flash memory. The method takes two parameters, a
long indicating the Flash byte address and a long containing the byte value to write.
The method returns true if this operation is supported by the programmer, false
otherwise. An exception should be thrown if any communication errors occur.

This method is virtual and not implemented in this abstract base class. It should write
a byte to the attached device’s EEPROM memory. The method takes two
parameters, a long indicating the EEPROM byte address and a long containing the
byte value to write. The method returns true if this operation is supported by the
programmer, false otherwise. An exception should be thrown if any communication
errors occur.

This method is virtual and not implemented in this abstract base class. It should write
the contents of the supplied HEX file object to the attached device’s Flash memory.
The method takes one parameter, a pointer to the required HEXFile object. The
method returns true if this operation is supported by the programmer, false
otherwise. An exception should be thrown if any communication errors occur, or a
null pointer is provided.

This method is virtual and not implemented in this abstract base class. It should read
data from the attached device’s Flash memory into the supplied HEX file object. The
method takes one parameter, a pointer to the required HEXFile object. The method
returns true if this operation is supported by the programmer, false otherwise. An
exception should be thrown if any communication errors occur, or a null pointer is
provided.

This method is virtual and not implemented in this abstract base class. It should write
the contents of the supplied HEX file object to the attached device’s EEPROM
memory. The method takes one parameter, a pointer to the required HEXFile object.
The method returns true if this operation is supported by the programmer, false
otherwise. An exception should be thrown if any communication errors occur, or a
null pointer is provided.

This method is virtual and not implemented in this abstract base class. It should read
data from the attached device’s EEPROM memory into the supplied HEX file object.
The method takes one parameter, a pointer to the required HEXFile object. The
method returns true if this operation is supported by the programmer, false
otherwise. An exception should be thrown if any communication errors occur, or a
null pointer is provided.

This method is virtual and not implemented in this abstract base class. It should set
the attached device’s lock bits to the supplied value. The method takes one
parameter, a long containing the desired lock bits. The method returns true if this
operation is supported by the programmer, false otherwise. An exception should be
thrown if any communication errors occur.

This method is virtual and not implemented in this abstract base class. It should read
the attached device’s lock bits. The method takes one parameter, a pointer to a long
to which the lock bits should be copied. The method returns true if this operation is
supported by the programmer, false otherwise. An exception should be thrown if
any communication errors occur, or a null pointer is provided.

This method is virtual and not implemented in this abstract base class. It should set
the attached device’s fuse bits (both low and high byte) to the supplied value. The
method takes one parameter, a long containing the desired fuse bits. The method

writeFlashByte

writeEEPROMByte

writeFlash

readFlash

writeEEPROM

readEEPROM

writeLockBits

readLockBits

writeFuseBits

 AVR911

 9

2568A-AVR-07/04

returns true if this operation is supported by the programmer, false otherwise. An
exception should be thrown if any communication errors occur.

This method is virtual and not implemented in this abstract base class. It should read
the attached device’s fuse bits (both low and high byte). The method takes one
parameter, a pointer to a long to which the fuse bits should be copied. The method
returns true if this operation is supported by the programmer, false otherwise. An
exception should be thrown if any communication errors occur, or a null pointer is
provided.

This method is virtual and not implemented in this abstract base class. It should set
the attached device’s extended fuse bits to the supplied value. The method takes one
parameter, a long containing the desired extended fuse bits. The method returns
true if this operation is supported by the programmer, false otherwise. An
exception should be thrown if any communication errors occur.

This method is virtual and not implemented in this abstract base class. It should read
the attached device’s extended fuse bits. The method takes one parameter, a pointer
to a long to which the extended fuse bits should be copied. The method returns
true if this operation is supported by the programmer, false otherwise. An
exception should be thrown if any communication errors occur, or a null pointer is
provided.

This method is virtual and not implemented in this abstract base class. It should read
the programmer’s software version. The method takes two parameters, two long
pointers to variables to which the major and minor version number should be copied,
respectively. The method returns true if this operation is supported by the
programmer, false otherwise. An exception should be thrown if any communication
errors occur, or a null pointer is provided.

This method is virtual and not implemented in this abstract base class. It should read
the programmer’s hardware version. The method takes two parameters, two long
pointers to variables to which the major and minor version number should be copied,
respectively. The method returns true if this operation is supported by the
programmer, false otherwise. An exception should be thrown if any communication
errors occur, or a null pointer is provided.

This is a class derived from the AVRProgrammer base class. It provides a generic
interface for the Bootloader application described in Application Note AVR109. It
overrides all the virtual methods from its base class, and provides a constructor with
equivalent parameters.

This is a class derived from the AVRProgrammer base class. It provides a generic
interface for the In-System Programmer application described in Application Note
AVR910. It overrides all the virtual methods from its base class, and provides a
constructor with equivalent parameters.

This class is an abstract class, providing a framework for implementing a byte-
oriented communication channel. All methods are virtual and empty and must be
overloaded by derived classes.

This is the destructor for the class. It currently has no function, just a placeholder for
future extensions.

This method should perform the necessary operation to open the communication
channel. This should always be called prior to any communication. The method takes
no parameters, and returns no value. An exception should be thrown if any errors
occur.

readFuseBits

writeExtendedFuseBits

readExtendedFuseBits

programmerSoftwareVersion

programmerHardwareVersion

AVRBootloader

AVRInSystemProg

CommChannel

~CommChannel

openChannel

10 AVR911
2568A-AVR-07/04

This method should perform the necessary operation to close the communication
channel. This should always be called when all communication is finished. The
method takes no parameters, and returns no value. An exception should be thrown if
any errors occur.

This method should send a byte to the communication channel. The method takes
one parameter, a long containing the byte to be sent. The method returns no value.
An exception should be thrown if any communication errors occur, or the channel has
not been opened.

This method should wait for and receive a byte from the communication channel. The
method takes no parameters, and returns a long containing the received byte. An
exception should be thrown if any communication errors occur, or the channel has not
been opened.

This method should flush the transmit buffer. The method takes no parameters, and
returns no value. An exception should be thrown of any communication errors occur,
or the channel has not been opened.

This method should flush the receive buffer. The method takes no parameters, and
returns no value. An exception should be thrown of any communication errors occur,
or the channel has not been opened.

This method should send an array of bytes to the communication channel. The
method takes two parameters, a pointer to the first unsigned char in the array and
a long indicating the array size in bytes. The method returns no value. An exception
should be thrown if any communication errors occur, or the channel has not been
opened.

This is a class derived from the CommChannel base class. It provides a generic
communication channel interface for the standard PC COM port. It overrides all the
virtual methods from it’s base class, and has it’s own specific constructor.

This is the constructor for the class. It initializes the port, but does not open the
communication channel. The constructor takes two parameters, a long containing
the COM port number (1 to 8) and a long containing the communication timeout limit
in seconds. An exception is thrown is an invalid port number or timeout value is
provided.

This is a class providing basic functionality for reading and writing Intel Extended HEX
files. It also has methods for defining the memory range to be used. This is useful for
reading or writing only parts of the AVR memories.

This is the constructor for the class. It takes two parameters, a long indicating the
required maximum data buffer size and a long containing the default byte value to be
used when initializing the buffer. An exception is thrown if not enough memory is
available.

This is the destructor for the class. It deallocates all previously allocated memory.

This method reads data from a HEX file. The method takes one parameter, the HEX
file name, and returns no value. An exception is thrown if any file access errors occur,
or the file format is invalid.

This method writes data to a HEX file. The method takes one parameter, the HEX file
name, and returns no value. An exception is thrown if any file access errors occur.

This method overrides the memory range indicators. This can be used to limits the
range for read and write operations. The method takes two parameters, two long

closeChannel

sendByte

getByte

flushTX

flushRX

sendMultiple

SerialPort

SerialPort

HEXFile

HEXFile

~HEXFile

readFile

writeFile

setUsedRange

 AVR911

 11

2568A-AVR-07/04

variables containing the new start and end limits, respectively. The method returns no
values. An exception is thrown if the provided range is invalid.

This method sets the entire data buffer to the desired byte value. The method takes
one parameter, a long containing the desired byte value, and returns no value.

This is an access method for the start address of the current range. The method
takes no parameters, and returns the start address.

This is an access method for the end address of the current range. The method takes
no parameters, and returns the end address.

This is an access method for the data in the buffer. It takes one parameter, a long
containing the byte address, and returns a long containing the byte value. An
exception is thrown if the address is outside legal ranges.

This is an access method for setting the data in the buffer. It takes two parameters, a
long containing the byte address and a long containing the byte value. An exception
is thrown if the address is outside legal ranges.

This is an access method for retrieving the buffer size. The method takes no
parameters, and returns a long containing the buffer size in bytes.

This class provides a simple XML parser for reading the AVR Part description files
that come with AVR Studio. It can also be used in other projects for general XML
parsing. Note that the class does not support attributes inside tags, although no errors
are generated if such tags are encountered. The attributes are simply ignored. The
class reads the entire XML file and builds a memory resident tree from the contained
information.

This is the constructor for the class. It takes one string parameter, the name of the
XML file to be parsed. The constructor reads the file immediately, so if no exceptions
are thrown, the XML tree is built and ready when the constructor finishes.

This is the destructor for the class. It deallocates all memory previously allocated for
the memory resident XML tree.

This method checks if a node exists at a given path. The method takes one string
parameter, the full path including the node name, and returns true if the node exists,
false otherwise.

This method retrieves a node’s value from the XML tree. The method takes one string
parameter, the full path including the node name, and returns the string value of
the node. An exception is thrown if the node is not found. Use the exists method to
ensure that the node exists.

This method prints the entire XML tree contents in a short format. The method was
originally implemented for debugging purposes. It takes no parameters, and returns
no value.

This is a class holding all information extracted for the command line parameters. The
class also contains the functionality for performing the necessary operations.

This is the constructor for the class. It initializes all information to default values.

This method parses the command line parameters. It takes two parameters, the
familiar int argc and char *argv[] from the main() function. The method
returns no parameters. An exception is thrown if any invalid parameters are
encountered.

clearAll

getRangeStart

getRangeEnd

getData

setData

getSize

XMLFile

XMLFile

~XMLFile

exists

getValue

print

JobInfo

JobInfo

parseCommandline

12 AVR911
2568A-AVR-07/04

This method performs all the work necessary to fulfill all tasks extracted from the
command line parameters. It also takes care of creating the required communication
channel and programmer objects. The method takes no parameters, and returns no
value. An exception is thrown if any errors occur.

This class serves as a container and namespace for often used functions. It is
instantiated in the source file, and an external reference to an Util object is provided
in the header file. It is especially used for log and progress messages, and for
enabling silent operation.

This is the constructor for the class. It takes no parameters. The constructor initializes
the internal log and progress status to enable both log and progress messages.

This is the destructor for the class. It currently has no function, just a placeholder for
future extensions.

This method prevents all further log messages from being display on screen. It takes
no parameters, and returns no value.

This method prevents all further progress messages from being display on screen. It
takes no parameters, and returns no value.

This method prints log-type messages to the screen, if not muted. The method takes
one parameter, the message string. The method returns no value.

This method prints progress-type messages to the screen, if not muted. The method
takes one parameter, the message string. The method returns no value.

This method converts a hexadecimal string to a number. The method takes one
parameters, the string, and returns a long containing the converted number. An
exception is thrown if any conversion errors occur.

This method converts a number to a string, using a specified radix. The method takes
two parameters, a long containing the number to be converted and a long containing
the desired radix to be used.

This method retrieves a value from the Windows registry database. The method takes
two parameters, a string containing the registry key path and a string containing the
key name. The method returns a string containing the retrieved value. An exception is
thrown if any errors occur during the database operations.

This class serves as a container for error messages to be thrown as exceptions.

This is the constructor for the class. It takes one parameter, the error message string.

This is the destructor for the class. It currently has no function, just a placeholder for
future extensions.

This is an access method for the error message string. It takes no parameters, and
returns a copy of the error message.

doJob

Utility

Utility

~Utility

muteLog

muteProgress

log

progress

convertHex

convertLong

getRegistryValue

ErrorMsg

ErrorMsg

~ErrorMsg

What

2568A-AVR-07/04

Disclaimer

Atmel Corporation

2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600

Regional Headquarters
Europe

Atmel Sarl
Route des Arsenaux 41
Case Postale 80
CH-1705 Fribourg
Switzerland
Tel: (41) 26-426-5555
Fax: (41) 26-426-5500

Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimshatsui
East Kowloon
Hong Kong
Tel: (852) 2721-9778
Fax: (852) 2722-1369

Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581

Atmel Operations
Memory

2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314

Microcontrollers
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314

La Chantrerie
BP 70602
44306 Nantes Cedex 3, France
Tel: (33) 2-40-18-18-18
Fax: (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards
Zone Industrielle
13106 Rousset Cedex, France
Tel: (33) 4-42-53-60-00
Fax: (33) 4-42-53-60-01

1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759

Scottish Enterprise Technology Park
Maxwell Building
East Kilbride G75 0QR, Scotland
Tel: (44) 1355-803-000
Fax: (44) 1355-242-743

RF/Automotive
Theresienstrasse 2
Postfach 3535
74025 Heilbronn, Germany
Tel: (49) 71-31-67-0
Fax: (49) 71-31-67-2340

1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/
High Speed Converters/RF Datacom

Avenue de Rochepleine
BP 123
38521 Saint-Egreve Cedex, France
Tel: (33) 4-76-58-30-00
Fax: (33) 4-76-58-34-80

 Literature Requests

www.atmel.com/literature

Disclaimer: Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company’s standard
warranty which is detailed in Atmel’s Terms and Conditions located on the Company’s web site. The Company assumes no responsibility for
any errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice,
and does not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel
are granted by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel’s products are not authorized for
use as critical components in life support devices or systems.

© Atmel Corporation 2004. All rights reserved. Atmel® and combinations thereof, AVR® , and AVR Studio® are the registered
trademarks of Atmel Corporation or its subsidiaries. Microsoft® , Windows® , Windows NT® , and Windows XP® are the registered trademarks
of Microsoft Corporation. Other terms and product names may be the trademarks of others

	AVR911: AVR Open Source Programmer
	Features
	Introduction
	Background and theory
	Quickstart information
	Command-line syntax
	Implementation
	Class Descriptions
	AVRDevice
	AVRDevice
	~AVRDevice
	readParametersFrom�AVRStudio
	getFlashSize
	getEEPROMSize
	getPageSize
	getFuseStatus
	getXFuseStatus
	getSignature

	AVRProgrammer
	AVRProgrammer
	~AVRProgrammer
	readProgrammerID
	setPagesize
	enterProgrammingMode
	leaveProgrammingMode
	chipErase
	readOSCCAL
	readSignature
	checkSignature
	writeFlashByte
	writeEEPROMByte
	writeFlash
	readFlash
	writeEEPROM
	readEEPROM
	writeLockBits
	readLockBits
	writeFuseBits
	readFuseBits
	writeExtendedFuseBits
	readExtendedFuseBits
	programmerSoftwareVersion
	programmerHardwareVersion

	AVRBootloader
	AVRInSystemProg
	CommChannel
	~CommChannel
	openChannel
	closeChannel
	sendByte
	getByte
	flushTX
	flushRX
	sendMultiple

	SerialPort
	SerialPort

	HEXFile
	HEXFile
	~HEXFile
	readFile
	writeFile
	setUsedRange
	clearAll
	getRangeStart
	getRangeEnd
	getData
	setData
	getSize

	XMLFile
	XMLFile
	~XMLFile
	exists
	getValue
	print

	JobInfo
	JobInfo
	parseCommandline
	doJob

	Utility
	Utility
	~Utility
	muteLog
	muteProgress
	log
	progress
	convertHex
	convertLong
	getRegistryValue

	ErrorMsg
	ErrorMsg
	~ErrorMsg
	What

	Disclaimer

